Current Status of IEEE 1451.4 Transducer Electronic Data Sheet (TEDS)

Marco Peres & Mark Schiefer
The Modal Shop, Inc. – Cincinnati, OH

For dissemination of IEEE 1451.4 info only

1451.4™ Standard

IEEE Standard for A Smart Transducer
Interface for Sensors and Actuators—
Mixed-Mode Communication Protocols
and Transducer Electronic Data Sheet
(TEDS) Formats

Motivation for 1451.4 TEDS

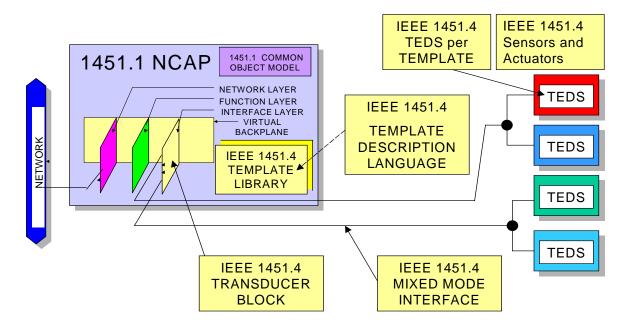
- Plug and Play for instrumentation
- Electronic Data Sheet
 - Sensitivity, model number, serial number, etc.
- Simplification of cable identification
- Elimination of data entry error and system setup
- Participation in 1451 vision
- Legacy compatibility
 - Existing accelerometer (sensor) users

History

- NIST TC9 sponsorship
- ◆1993-1996 IEEE 1451.1 & .2 formed
- ◆1996 IEEE 1451.3 WG (multi-drop)
- ◆1997 IEEE 1451.4 WG formed
- Balloted and accepted May 2004
- Corrigendum in late 2005
- Up for review in 2009

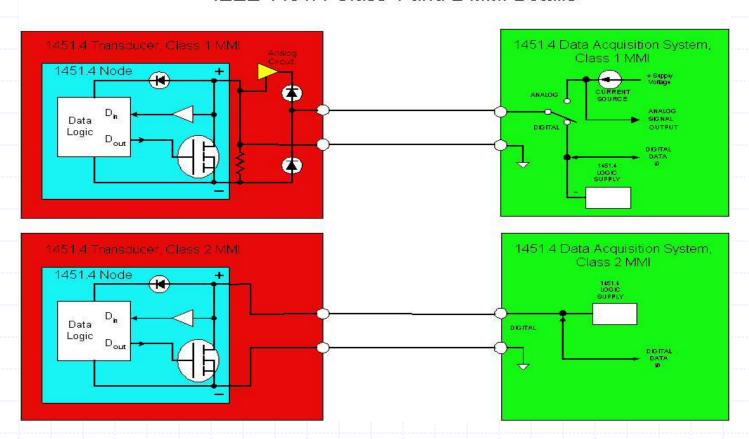
1451.4 Participants

- Mostly everybody in the accelerometer community:
 - PCB, B&K, Endevco, Kistler, Wilcoxon
- The Modal Shop
- Oak Ridge National Labs
- National Instruments
- Dallas Semiconductor
 - 1-wire technology (key piece of technology that allowed implementation of the memory in the sensor)

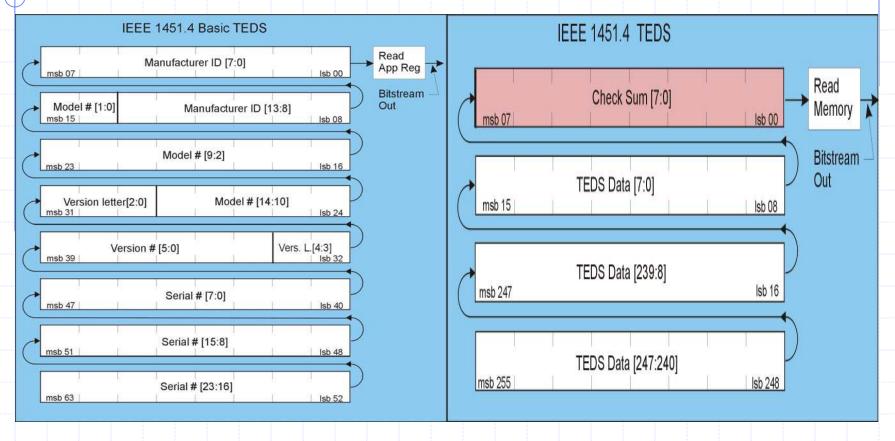

Implementation

- Electrical reprogrammable memory added to sensor/actuator
- Memory contains ROM (permanent) and RAM (alterable)
- Information out is serial bit-stream
- ♦ Operations limited to −40°C to 85°C
- Based on Maxim/Dallas 1-wire (DS2430A)

IEEE 1451.4 Architecture


IEEE 1451.4 System Architecture

Class of interface


IEEE 1451.4 Class 1 and 2 MMI Details

IMAC XXVII February 9-12 2009

TEDS Bitmaps

64 bit

256 bit

IMAC XXVII February 9-12 2009

Differences

- The early producers agreed not to utilize the ROM memory
- Early templates crude (TEDS v0.9 vs TEDS v1.0)
- v1.0 incorporates TEDS Development Language (TDL) concept
- TDL development is encouraged
- ◆IEEE is registration authority

Example: Accelerometer programmed per IEEE P1451.4 (template 0)

label	Data	Units	Min	Max
Model number	333		0	65535
Version letter	В		Α	Z
Version number	32		0	63
Serial no.	25451		0	33554431
Calibration Date	5/28/2007			
Sensitivity @ reference condition	0.010198	V/(m/s²)	1.00E-04	49.17322
Reference frequency (F ref)	159.753479	Hz	10.17502	1.91E+04
High pass cut-off frequency (F hp)	0.010061	Hz	0.01	35.75359
Polarity (Sign)	0		0	1
Sensitivity direction (x,y,z)	N/A			
Measurement location ID	0		0	511
User data (ascii)	template 0			

Example: Accelerometer programmed per IEEE 1451.4 (template 25)

label	Data	Units	Min	Max
Model number	333		0	32767
Version letter	В		Α	Z
Version number	32		0	63
Serial no.	25451		0	16777215
Sensitivity @ reference condition	0.010198	V/(m/s²)	5.00E-07	172.2408
High pass cut-off frequency (F hp)	0.010061	Hz	0.005	1.42E+04
Sensitivity direction (x,y,z)	N/A			
Transducer weight	3.83376	g	0.1	9.74E+03
Polarity (Sign)	0		0	1
Reference frequency (F ref)	159.753479	Hz	0.35	2.26E+03
Reference temperature (T ref)	25	°C	15	30.5
Calibration Date	5/28/2007			
Calibration Initials	MAP			
Calibration Period (Days)	365	days	0	4095
Measurement location ID	1	_	0	2047
User data (ascii)	template 25			

What are accelerometer vendors supporting?

- All support 1.0, it is the default
- Most moving to 1.0 after testing
- All will offer "both" for quite some time
- Most require customer to specify
- Electronics / Software level is important
- Once you go 1.0, you don't go back!

TEDS Sensors – all types

- Accelerometers Uni-axial, Tri-axial
- Impact hammers, force sensors, impedance heads
- Microphones all types
- Load Cells, Strain Gauges, Impedance
- Thermocouples, Pressure sensors
- Extended Functionality
- Charge converters (in-line)
- Legacy- "TEDS in a Tube"

What does TEDS cost?

- Microphones standard in most
- Accelerometers US\$25-55 additional
- Electronics standard to US\$1500
- Migration is \$0 (with cal) to US\$55
- Savings is justification for cost

TEDS Sensors Manufactures

- Accelerometers
 - PCB, B&K, Dytran, Endevco, Kistler,
 Wilcoxon, etc
- Microphones
 - PCB, B&K, GRAS, etc
- Strain Gage load cells
 - Lebow, HBM, Futek

Electronics & Hand Held Devices

- PCB / The Modal Shop
- Dytran
- Endevco
- **♦**ATA
- NI PDA Toolkit is an enabler

PC based Readers/Writers

- The Modal Shop: 400B76 (USB)
- ◆B&K: BZ 5294 (RS-232)
- Endevco
- Dytran
- Kistler 5000M04

Electronics - PC Cards

- National Instruments
 - PXI-4462, PCI-4461, NI 9233,9234
 - SCXI-1314T, Compact RIO NI 9237
- VXI Technology
 - VT1435
 - VT1436

Electronics - Analyzers

- ♦ LMS: SCADAS III
- M+PInternational
- B&K: Pulse
- Oros
- Data Physics: Quattro, Abacus
- IOtech Wavebook
- LDS Dactron Focus II (only support to preliminary templates – TEDS v0.9 – at this time)
- Etc.
- → Should always check with analyzer manufacturer on what TEDS sensors and templates are supported

Electronics – Signal Conditioners & Recorders

♦PCB

- 481, 498, 440 series

♦NI

- SC-3250, BNC-2096

♦B&K

- Deltatron, Nexus

Endevco

- OASIS

Sensotec

- SC2000, SC3400

Precision Filters

♦TEAC LX10, Sony EX Series

TEDS and Calibration Systems

- What about re-calibration?
 - Does your calibration system support TEDS?
 - Does your calibration house support TEDS?

Applications

- Geometry Information
- Sound Contour w/phase
- Large Channel count mapping
- Channel Identification
- Vibration controller security

LMS (Geometry) Format

- ♦ IEEE 1451 Standard permits "private"
- LMS (Daimler, Airbus) needed geometry
- ◆IEEE Working group didn't support
- Work progressing on defining 1.0 TDL
- Currently represents single largest channel count of installed 1451 sensors

Additional Information

- ♠ I EEE
 - http://standards.ieee.org/regauth/1451
- National Instruments
 http://www.ni.com/teds/
- TMS TEDS FAQ
- Wilcoxon Multiple TEDS papers
- B&K extensive TEDS material
- Maxim/Dallas 1 wire products

Summary

- ◆ IEEE 1451 is well-entrenched in market
- Est over 150,000 1451 sensors shipped
- More than 100 sensors type, 8+ vendors
- More than 20 electronics, 6+ vendors
- ◆ IEEE Manufacturer ID Public Listing
 - 71 registered manufacturers
- IEEE 1451.4 continues to gain acceptance in the marketplace

